inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Haruo Naruke* and Toshihiro Yamase

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Correspondence e-mail: hnaruke@res.titech.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{Mo-O}) = 0.004 \text{ Å}$ R factor = 0.023 wR factor = 0.060 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$Tb_2Mo_4O_{15}$

The title compound, tetramolybdenum(VI) diterbate(III), was prepared by pyrolysis of $Tb_2(H_2O)_{12}Mo_8O_{27}\cdot 6H_2O$ at 1023 K for 2 h in air. The structure consists of trigonal bipyramidal MoO₅, tetrahedral MoO₄, and monocapped trigonal prismatic TbO₇ units. The two MoO₅ and two MoO₄ units are cornershared, to form a Mo₄O₁₅ group.

Comment

Much attention has been paid to the physical properties of rare earth (RE) molybdates: for example, the ferroelectric and ferroelastic properties of Gd₂(MoO₄)₃ (Borchardt & Bierstedt, 1966), fast oxide-ion conduction in La2Mo2O9 (Lacorre et al., 2000), trivalent scandium conduction in $Sc_2(MoO_4)_3$ (Imanaka et al., 2000), and unusual negative thermal expansion for RE₂(MoO₄)₃ (Evans et al., 1997). RE molybdates are usually prepared by firing stoichiometric mixtures of RE₂O₃ and MoO₃. However, because of the strong vaporization behavior of MoO_3 (>1043 K), it is not easy to maintain their initial stoichiometry. For this reason, although many nRE_2O_3 ·mMoO₃ phases are found in equilibrium studies, only a few compounds have been crystallized and their structures determined. Recently, we obtained single crystals of novel europium molybdates, $Eu_4Mo_7O_{27}$ (n:m = 2:7) and $Eu_6Mo_{10}O_{39}$ (3:10), in a melt of $Eu_2O_3 \cdot 6MoO_3$, by 1073 K pyrolysis of an Mo-rich precursor Eu₂(H₂O)₁₂Mo₈O₂₇·6H₂O $(= Eu_2O_3 \cdot 8MoO_3 \cdot 18H_2O)$ (Naruke & Yamase, 2001). We applied this preparation method to synthesize nTb_2O_3 . $mMoO_3$ phases, and obtained single crystals of Tb₂Mo₄O₁₅.

Tb₂Mo₄O₁₅ is isomorphous with Ho₂Mo₄O₁₅ (Efremov et al., 1988). Fig. 1a shows the coordination environment of the Tb, Mo1, and Mo2 atoms. The Tb atom is coordinated by seven O atoms with a mean Tb-O distance of 2.330 Å, which is slightly longer than the Ho–O distance (mean 2.305 Å) in Ho₂Mo₄O₁₅ (Efremov et al., 1988), as a result of the difference in the ionic radii of Tb³⁺ and Ho³⁺ (Shannon, 1976). The TbO₇ polyhedron is approximated to a monocapped trigonal prism, comprising two trigonal planes of [O2ⁱⁱⁱ, O4, O7^{iv}] and [O3, $O6^{i}$, $O8^{ii}$], and a capping $O5^{v}$ atom. As shown in Fig. 1(b), the resulting Mo1O₅ and Mo2O₄ polyhedra share a corner at the O2 atom. Furthermore, Mo1O₅ and the symmetry-related Mo1^{vii}O₅ are corner-shared by the O1 atom which lies on a center of symmetry. As a result, the molybdate polyhedra form a tetrameric Mo₄O₁₅ cluster (Fig. 1b). In the Mo1O₅ polyhedron, the Mo1-O2^{vi} bond length is much longer than the others (Table 1). A similar distorted MoO₅ trigonal bipyramid has also been observed in Eu₄Mo₇O₂₇ (Naruke & Yamase, 2001). It is interesting to note that $Ce_2Mo_4O_{15}$ (Fallon & Gatehouse, 1982) and La₂Mo₄O₁₅ (Dubois et al., 2001) possess different molybdate groups ($\{Mo_4O_{14}\}_{\infty}$ and Mo_6O_{22} groups,

Received 25 October 2001 Accepted 31 October 2001 Online 10 November 2001

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

(a)

Figure 2

Packing diagram of Tb₂Mo₄O₁₅ viewed parallel to the *a* axis. The green polyhedra denote the TbO₇, the hatched grey polyhedra the Mo1O₅, and the plain grey tetrahedra the Mo2O₄ units.

Figure 1

ORTEPII (Johnson, 1976) views of the coordination environments of (a) Tb, Mo1 and Mo2, and (b) the Mo_4O_{15} group in $Tb_2Mo_4O_{15}$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) $2 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) $\begin{array}{c} x, -\frac{1}{2} - y, \frac{1}{2} + z; \quad (\text{iv}) \quad 1 - x, y - \frac{1}{2}, \frac{3}{2} - z; \quad (\text{v}) \quad 2 - x, y - \frac{1}{2}, \frac{3}{2} - z; \quad (\text{vi}) \\ 1 - x, -y, 1 - z; \quad (\text{vii})1 - x, 1 - y, 1 - z; \quad (\text{viii})x, 1 + y, z. \end{array}$

respectively) and coordination numbers of the RE (8 and 9, respectively). The TbO₇, Mo1O₅ and Mo2O₄ polyhedra are connected by edge- and corner-sharing in the crystal lattice (Fig. 2).

Experimental

The precursor Tb₂(H₂O)₁₂Mo₈O₂₇·6H₂O was prepared by modification of the synthesis procedure of $Eu_2(H_2O)_{12}Mo_8O_{27}\cdot 6H_2O$ (Yamase & Naruke, 1991). An aqueous solution (10 ml) containing MoO₃ (1.93 g) and KOH (1.5 g) was diluted to 1000 ml, and acidified to pH = 4.5 with HClO₄. Tb(NO₃)₃·6H₂O (3.8 g) was dissolved in water (20 ml) and added slowly to the molybdate solution with stirring. The final pH was adjusted to 3.0 with HClO₄, and the solution was kept at room temperature. The pale yellow polycrystalline product, obtained after a week, was collected by filtration, washed with water, and dried in air. Powder (0.1 g) was placed on an alumina container and fired at 1023 K for 2 h in air. Single crystals of Tb₂Mo₄O₁₅ were formed in a glassy substance. Reuse of the same container was effective in the crystallization of $Tb_2Mo_4O_{15}$. Details of the firing conditions are described in the earlier paper (Naruke & Yamase, 2001).

Crystal data	
$Mo_4O_{15}Tb_2$	$D_x = 4.629 \text{ Mg m}^{-3}$
$M_r = 941.60$	Mo Ka radiation
Monoclinic, $P2_1/c$	Cell parameters from 3943
a = 6.8666 (4) Å	reflections
b = 9.6596 (3) Å	$\theta = 3.7-27.5^{\circ}$
c = 10.5866(5) Å	$\mu = 13.97 \text{ mm}^{-1}$
$\beta = 105.827 (2)^{\circ}$	T = 296.2 K
V = 675.57 (6) Å ³	Block, colorless
<i>Z</i> = 2	0.10 \times 0.10 \times 0.05 mm
Data collection	
Rigaku R-AXIS-RAPID Imaging	1545 independent reflections
Plate diffractometer	1454 reflections with $F^2 > 2\sigma(F)$
ω scans	$R_{\rm int} = 0.045$

Absorption correction: numerical (Higashi, 1999*a*,*b*) $T_{\min} = 0.284, T_{\max} = 0.512$ 6254 measured reflections

'²) $\theta_{\rm max} = 27.5^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 12$ $l = -13 \rightarrow 13$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & (\Delta/\sigma)_{\rm max} = 0.001 \\ R[F^2 > 2\sigma(F^2)] = 0.023 & \Delta\rho_{\rm max} = 1.82 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) = 0.060 & \Delta\rho_{\rm min} = -1.97 \ {\rm e} \ {\rm \AA}^{-3} \\ S = 0.90 & Extinction \ correction: \ Zachariasen \\ 1543 \ {\rm reflections} & (1967) \ {\rm type} \ 2 \ {\rm Gaussian \ isotropic} \\ 98 \ {\rm parameters} & Extinction \ coefficient: \ 0.052 \ (1) \\ w = 1/[\sigma^2(F_o^2) + \{0.05[{\rm max}(F_o^2,0) \\ + 2F_c^2]/3\}^2] \end{array}$

Table 1

Selected interatomic distances (Å).

Tb-O4	2.276 (3)	Mo1-O7	1.749 (3)
Tb-O6 ⁱ	2.303 (3)	Mo1-O1	1.8695 (3)
Tb-O8 ⁱⁱ	2.304 (3)	Mo1-O2 ^{vi}	2.544 (3)
Tb-O3	2.331 (3)	Mo2-O6	1.747 (3)
Tb-O2 ⁱⁱⁱ	2.335 (3)	Mo2-O8	1.752 (4)
Tb-O7 ^{iv}	2.374 (4)	Mo2-O4	1.760 (3)
Tb-O5 ^v	2.389 (3)	Mo2-O2	1.782 (3)
Mo1-O3	1.728 (4)	Mo2-O5 ⁱ	3.211 (4)
Mo1-O5	1.736 (3)		
-			

Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) $2 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) $x, -\frac{1}{2} - y, \frac{1}{2} + z$; (iv) $1 - x, y, -\frac{1}{2}, \frac{3}{2} - z$; (v) $2 - x, y -\frac{1}{2}, \frac{3}{2} - z$; (vi) 1 - x, -y, 1 - z.

Difference Fourier peaks with $\Delta \rho_{\text{max}} = 1.82$ and $\Delta \rho_{\text{min}} = -1.97$ e Å⁻³ are observed at positions 0.744 and 0.038 Å from the Tb atom, respectively.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2000; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*. This work was supported in part by Grant-in-Aid for Scientific Research (Nos. 10304055 and 1274036) from the Ministry of Education, Culture, Sports, Science, and Technology.

References

- Altomare, A., Cacarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Borchardt, H. J. & Bierstedt, P. E. (1966). Appl. Phys. Lett. 8, 50-52.
- Dubois, F., Goutenoire, F., Laligant, Y., Suard, E. & Lacorre, P. (2001). J. Solid State Chem. 159, 228–233.
- Efremov, V. A., Davydova, N. N., Gokhman, L. Z., Evdokimov, A. A. & Trunov, V. K. (1988). *Russ. J. Inorg. Chem.* 33, 1732–1735.
- Evans, J. S. O., Marry, T. A. & Sleight, A. W. (1997). J. Solid State Chem. 133, 580–583.
- Fallon, G. D. & Gatehouse, B. M. (1982). J. Solid State Chem. 44, 156-161.
- Higashi, T. (1999a). SHAPE. Rigaku Corporation, Tokyo, Japan.
- Higashi, T. (1999b). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Imanaka, N., Ueda, T., Okazaki, Y., Tamura, S. & Adachi, G. (2000). Chem. Mater. 12, 1910–1913.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. (2000). Nature (London), 404, 856–858.
- Molecular Structure Corporation (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Naruke, H. & Yamase, T. (2001). J. Solid State Chem. In the press.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Yamase, T. & Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285-292.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.